Poisson Disorder Problem with Exponential Penalty for Delay

نویسندگان

  • Erhan Bayraktar
  • Savas Dayanik
چکیده

We solve the Poisson disorder problem when the delay is penalized exponentially. Our objective is to detect as quickly as possible the unobservable time of the change (or disorder) in the intensity of a Poisson process. The disorder time delimits two different regimes in which one employs distinct strategies (e.g., investment, advertising, manufacturing). We seek a stopping rule that minimizes the frequency of false alarms and an exponential (unlike previous formulations, which use a linear) cost function of the detection delay. In the financial applications, the exponential penalty is a more apt measure for the delay cost because of the compounding of the investment growth. The Poisson disorder problem with a linear delay cost was studied by Peskir and Shiryaev [2002. Solving the Poisson Disorder Problem. Advances in Finance and Stochastics. Springer, Berlin, Germany, 295–312], which is a limiting case of ours.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compound Poisson Disorder Problems with Nonlinear Detection Delay Penalty Cost Functions

The quickest detection of the unknown and unobservable disorder time, when the arrival rate and mark distribution of a compound Poisson process suddenly changes, is formulated in a Bayesian setting, where the detection delay penalty is a general smooth function of the detection delay time. Under suitable conditions, the problem is shown to be equivalent to the optimal stopping of a finite-dimen...

متن کامل

Approximating Bayes Estimates by Means of the Tierney Kadane, Importance Sampling and Metropolis-Hastings within Gibbs Methods in the Poisson-Exponential Distribution: A Comparative Study

Here, we work on the problem of point estimation of the parameters of the Poisson-exponential distribution through the Bayesian and maximum likelihood methods based on complete samples. The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated using three methods, namely the Tierney Kadane approximation method, the importance sampling method and the Metrop...

متن کامل

A computational analysis of the detection problem for Brownian motion with exponential penalty based on linear programming

The quickest detection problem of a Wiener process for the case of an exponential delay-penalty was recently solved by Beibel. He derived an explicit solution to the problem exploiting the equivalence of this detection problem to an optimal stopping problem of a 2-dimensional degenerate diffusion process. In this publication we shall compute the minimal risk and the optimal stopping rule – with...

متن کامل

Accurate Inference for the Mean of the Poisson-Exponential Distribution

Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...

متن کامل

Effects of Probability Function on the Performance of Stochastic Programming

Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2006